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Abstract. For an impulsive system with delay it is proved that if the corresponding system
without delay has an isolated a-periodic solution, then in any neighbourhood of this orbit
the system considered also has an @-periodic solution if the delay is small enough.

1. Introduction

In the mathematical simulation of the evolution of real processes in physics, chemistry,
population dynamics, radio engineering, etc which are subject to disturbances of negli-
gible duration in comparison with the total duration of the process, it is ofien convenient
to assume that the disturbances are ‘momentary’, in the form of impulses. This leads
to the investigation of differential equations and systems with discontinuous trajectories,
or with impulse effect, called, for the sake of brevity, impulsive differential equations
and systems [1, 2].

In many applications it is assumed that the system considered is subject to the
causality law, i.e. the future state of the system does not depend on the past states and
is determined by the present only. But in the more detailed investigation it often becomes
obvious that the causality law is just a first approximation to the real situation, and a
more realistic mode] should involve some of the past states of the system. Moreover,
many problems lose their sense if the dependence on the past is not taken into account.
All this leads to differential equations with delay of the argument [3-5]. Here we
could also mention some recent works concerning the qualitative theory and numerical
analysis of these equations and some generalizations of this notion [6-14].

A classical problem of the qualitative theory of differential equations is the existence
of periodic solutions (for the case of differential equations with delay see [15-40], and
also [41-45] where some applications to population dynamics are given, while for
impulsive differential equations see the monograph [2] and the papers [44-47], quoted
there as well as more recent works [48-52]). A traditional approach to this problem is
the tnvestigation of the linearized system (also called system in variations) with respect
to a periodic solution of the unperturbed system satisfying certain non-degeneracy
assumptions.

In the present paper for an impulsive system with a small delay it is proved that if
the corresponding system without delay has an isolated ®-periodic solution, then in
any sufficiently small neighbourhood of this orbit the system considered also has a
unique @-periodic solution. Thus the impulsive system without delay plays the role of
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an unperturbed system, and the delay that of a small perturbation, In the scalar (one-
dimensional) case a similar problem was touched in [53, 54] using the method of
successive approximations. In an earlier version of the present paper the result was
proved under considerably more restrictive assumptions applying the contraction map-
ping principle [535, section 8]. Moreover, the result was extended to the case of a neutral
impulsive system with a small delay [56} (see Remark 1 below for more details).

2. Statement of the problem. Main result

Consider the system with impulses at fixed moments

2=F(¢, x(0), x(t — k) t#L t£4+h
Ax(t}=1(x(t), x(t—h)) ieZ (1)
Ax(t+hR)y=0 if A>0

where xeQaR", A RXQXxQ—-R", I;: QO xQ-R"({eZ) are the impulses at morments
t; and {t},cz is a strictly increasing sequence such that
lim =%
=+t
Q is a domain in R", Ax(t;)=x{6+0)—x(¢,— 0}, A =0 is the delay.

As usual in the theory of impulsive differential equations, at the points of discontinu-
ity £; of the solution x(7) we assume that x(z;)=x(t,—0). It is clear that, in general, the
derivatives %(#), x(#;,+4) do not exist. However, there exist the limits
%(t,£0), X(#,+ ~h+0). According to the above convention, we assume X(t,) =x(f—0),
X+ hy=x(+h—0).

For the sake of brevity we shall use the following notation:

O =x(t—Hh) x=x(4).

Introduce the following conditions:

H1. The function f{¢, x, ) is continuous, @-periodic with respect to ¢, and continu-
ously differentiable with respect to x, X.

H2. The functions 1;(x, £)e C'(Qx Q, R"), ieZ.

H3. There exists a positive integer m such that ¢, ,,=4+ @, Lo u(x, ¥)=1,(x, %),
ieZ, x, xeld.

Together with (1) we consider the so called generating system

{i=f(f, x(2), x(1}) LY

Ax(t) =Ii(x;, x;) ieZ (2)

obtained from (1) for A=0, and suppose that;

H4. The generating system (2} has an @-periodic solution w(#) such that y()eQ
for all teR.

Next define the linearized system with respect to y(£):

{J?=A(f)y t£ L

At)=By,  ieZ @)
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where
é a
A(t) =_f(t1 X, x)]x‘:'w(f} B[=—I,(JC, x)lx-l}lj' (4)
Ox dx

Let X(r) be the fundamental solution of (3) (i.e. X(0)=E, the unit matrix). Now
we make the following additional assumptions:

H3. The matrix E— X{®) is non-singular.

H6. The matrices E+ B;, ie Z, are non-singular.

The last two conditions allow us to define Green’s function [2] of the periodic
problem for a non-homogeneous system corresponding to (3) by the formula

X(E-X() ' X (1) 0<T<t<w

ot ")={X(:+m)(E—X(w))"r'(r) O<i<r<a

and extend it as w-periodic with respect to 7 and .
We may note the refation

G(t, ;+0Y=G(t, t,)(E+ B)™".

Our result in the present paper is the following:

Theorem 1. Let conditions H1-H6 hold. Then there exists a neighbourhood <O of
the orbit x=w(¢) and a number A >0 such that for s <A, system (1) has in Q a unique
w-periodic solution x(¢, A) such that x(¢, ) = w(r).

Remark I. As mentioned in the introduction, in the initial version of the paper the
theorem was proved under stronger assumptions (Lipschitz continuity of the second
derivatives in conditions H1 and H2) using the contraction mapping principle (see [55],
section 8). In [56] this result was extended for the neutral system

{J&(t)=D(t)J'c(t—h) +f(,x(0), x(1—h))  t#t+kh ieZ  keNu {0} @

Ax(t)=L(x(t), x(t:—B)), ieZ  Ax(t,+kK)=0 if t,+kh#t  VieZ

using again the contraction mapping principle under the additional assumption that
the matrix D(7) is @-periodic, smooth and small enough. Obviously, the assumptions
in this case can be weakened by applying the implicit function theorem [57] as below.
We may note that in both cases under the same conditions (with just continuity of D(f)
in system (4)) we can apply the Schauder fixed point theorem instead, but then we
cannot prove the local uniqueness of the periodic solution. The use of the implicit
function theorem was kindly suggested by a referee.

3. Proof of the main result

3.1. Reduction of the problem to an operator equation in a suitable function space

There exists a constant &; >0 such that Q contains a closed &,-neighbourhood Q, of
the periodic orbit x=y(s).
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For a vector xeR" we denote by |x] its Euclidean norm, and for an n x n matrix 4
we define the associated norm

| 4] =sup{|Ax|/|x|; xeR"\0}.
In system (1) we change the variables according to the formula
x=y+y() . (5)
and obtain the system
y=AOy+ O, )+ AL y+y, 5+ W) t#L t#E+h
Ap(t;) =By, +Ji(o., ALy y, Jit W) ieZ (6)
Ap(t;+R)=0 for k>0,ieZ

where
A, x, D=1, x, D) —f(1, x, x)
Al (xi, Z)=L(x, 8= Ii(x. x;)
are perturbations due to the delay while
2, ) =f(t, y+ w(), y+w(O) =16, w(), (1)) — A1)y M
L=L(y+yoyty) — Ly, y) — By (8)

are nonlinearities independent of the delay.

To find an -periodic solution of system (1) we shall find a solution y(t) of system
(6) satisfying |p()] <5< F,. According to [2] the unique w-periodic solution z(f) of
the linear system

i=A(Dz+ QL Y HA(L y+y, v+ ) t£L

Az(t,) =Bz, + 1, (p:) T AL+, 7o+ ) ieZ ©®)
Az(t,+ =0 for Ah>0,ieZ

is given by the formula
z(1) =_[ G(t, [Q(7, 3TN+ Bf (1, p(7) + p (1), {(r) + ¥()] dr
o

+ 3 GG HFOAy) ALyt v, i+ ) (10)

0<h=ar

where Green’s function G(¢, 7) was defined above.
Suppose, for the sake of definiteness, that

0<<tr<. . . <, <@.
Let 71, >0 be so small that for any %€[0, k;] we have

hth<ti,,i=l,m—1,i,th<o.
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Denote by C,,, the space of all @-periodic, piecewise continuous functions w: R - R"
with discontinuities of the first kind at ¢, and w{z,—0)=w(t,), ieZ, supplied with the
norm

lwll =sup Jw(2)].
For 8&(0, §,] we define the subset
Ts={weCo,: Wl <8}

By C{) we denote the space of all functions we C,,,, having continuous derivatives on
each interval of the form (¢, ;+A) or (¢, + 14, {;.,), and such that there exist the limits
Wt +£0) and Ww(y;+h+0). For such functions by definition we set w(£)=1#w{s,—0),
Ww(t,+ k) =wu(t;+h—0). For { >0 we define the subset

Ve={well): sup |{w(0)|<{}
rel0, ar)

By formula (10) a solution of system (6) is a function ye &, , satisfying the equation

y=%h.y) (11)
where the map %: [0, 1] X (Ts < Co ) Can is defined as follows:
Ulh, y)=F1(p)+ Falh, y) + F3(y)+ Falh, y) (12)

while

9’1(}‘)=J. G(+, 1}Q(z, y(7)} dx,

o

Falh, y)“‘"J G(-, D)Af(z, (1) + y (1), J(7) + (7)) dv,
0

Fi)=F G(-, 4 +0)J(3)

=1

ﬁ“(h’ y)= Z G( ’ ti+0)AIr'(yi+ Y., J_;l+ l){_fl)

i

3.2. Application of the implicit function theorem
We define the map %: [0, 2y ] X (T5 = Copn} = Co . bY

G, )=y—uUh,y)
and seek a solution y of the equation
F(h,»)=0. (13)

Obvicusly, (0, 0) =0. We shall prove that:

(i} % is continuous with respect to % at the point 2=0 for y in T, ;

(i) # is continuously differentiable with respect to y in the set [0, 2, ] % T5,, and
D,%(0,0)=1Id.

Assertion (i) means that % may be considered as a one-parameter family of perturba-
tions of the map %, =%(0, - ): Ts—=Cpp.
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Following some arguments in [57], introduce the Banach spaces
Bo=C(Ts, Copn)s B =B2=Cy.
For & near @, in %, (i.e. h near 0) and y near 0 in &, define
O(Y, v)=%(h, y)eB,.

According to assertion (ii) ® is continuously differentiable with respect to y for fixed
@, and the differentiability with respect to ¥ is obvious since @ is linear in %. It follows
(see exercise after Lemma 1.1 in [57]} that @ is continuously differentiable in (%, y),
and the differential for fixed % at (%, y)=(%,, 0) is the identity map in €, ,.

Then by the implicit function theorem (Theorem 1.5 in [57]) there exists a C' map
o from a neighbourhood of %, in &, to 2 neighbourhood of 0 in &, such that y = (%)
is the only solution close to O of ®(¥, ¥)=0. In other words, there exists a number
hye(0, A)] and a continuous map y(f): [0, Ay ) ~+ Ts, < Cp4( 89 (0, §,]1) satisfying equa-
tion (13) and »(0) =0. This map, considered as a function of ¢ depending on the delay &
in a continuous way, gives the unique e-periodic sclution p(¢, k) of system (6} satisfying
¥ <8c. Then by formula (5) we obtain the unigue @-periodic solution x(¢, /) of
system (1) in a §g-neighbourhood € of the periodic orbit x= w(£). Moreover, x(¢, 0)=
w(?).

3.3, Proof of assertions (i) and (ii)

First we introduce some notation. Let us denote
M =sup{| f(1, x, D)|: te[0, ®], x, X }
My=sup{| fi(1, x, X)| . te[0, v}, x, X}
Ms=sup]{| fe(t, x, x)|: te]0, ], x, e }
My=sup{|d:],(x, DN : i=T1,m, x, Te€}

where f,, [z and 8;/; are the partial derivatives of f with respect to x and £, and of I;
with respect to %, and

M=sup{|G(s, T)|: t, T]0, ®]}.

We introduce the following modules of continuity of the first derivatives of the
fonction in condition HI:

m{p)=sup{| filt, x, x + P} —f{t, x, x)|: te[0, ], xelhy, Iy <p}
na(p) =sup{| fz(t, x, x+p) = fe(t, x, x)|: te[0, @], xeQ,, Iyl <p)

é
P (flt,x+y, x+y)—ft, x+)", x+y"))

nalp) = sup{

te[0, @), x=w (1), Y| <61, [3'1 <81, |y — ' sﬂ}-

(i) It suffices to prove the continuity of % with respect to % at the point =0 for
yeTs,. From the representation (12) we find #(0, )= (»)+ F1(»). It remains to
estimate ,(f, ¥) and F4(k, ¥) for y in a dense subset of T, namely yeTs n V, for
some {>0.
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Define the sets
Ah=ig (ti, 1+ k) Ii=00, o]\A,.
For tel, the points ¢ and ¢ —/ belong to the same interval of continuity of the functions

w and y, thus
g (@)= w (D =]y(t=h) -yl <h sup )llﬁ'(i)l <hM,

e(r—ht
since ¥ is a solution of (2), and
|F() — (D <hS.
Now for rel, we have
|Af(L, w0+, (D) +7)]
=St w(@+y, §+7) =6, w(D+y, y() +y)l
SM3|F—y+ () — w (DI SMsh(S+ My).
For teA; we use the rough estimate
|Af(t, w(@) +p, §(O)+ 70 <2M\.

This is sufficient for our aims since the measure of the set A, is #h and it is small when
k is small. Thus

@®»

|#2(h, »)(D)) Sf |G, DAz, ()3 4(2), B(r)+5(1))] d7

0
=f |G(t, D) |Af(x, y(T) + y(2), ¥(7)+ (7)) dr
I

L+ h

+ ‘2 |G, DA (7, w(T)+ (1), g(2)+F()] dr
=14,
SMu[(@ —mi) M+ M )+ 2mM, . (14)

Similarly we find
[y —wil <AM, |7~y <h§
|AL (it v, ot W)l SMah(E+ My)
and finally
15 4, M| < MmMh({ + M), (15}

Estimates (14), (15) yield the desired continuity of the map #(h, - ) at the point
h=0,

(ii) Let us recall [57, 58] that the partial derivative D,%(k, ) is a linear map
Cpn— G, defined as follows:

DGk, y)z= ;]ﬂ 1[Gk, y+ pz)—%h, ¥)].
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Continuous differentiability of #(#, ») with respect to y means that the mapping
DyE(h, ¥z [0, h 1 % (Tsc Con) X Cpu— €, is continuous, Obviously we have

D,%(h, y)=1d— D, (h, y)
and
Dy&?[(h’ = D},fl(y) + D,F5(h, y)+ Dyﬁ:%(.V)hl_ D,,g'v'4(h, ») (16)

provided that all derivatives on the right-hand sides exist. Thus it suffices to find that
the derivatives on the right-hand side of (16) exist, are continuous in the above sense

and vanish at =0, y=0. We shall carry out the proof with all details only for the first
addend.

Dyfl(y)z=£i_q1° wF (ytpz) —F ()]

=£iﬂ Tk _[ G+, DOz, Y (1) +pz(r))— Qr, ¥(7))] d7

=.[ G(:, 1) Liﬂ p7LS( wl(n) + () + pz(), w(r) + p(e) + pz(r))
1]
—f, w(r) +y(7), y(z) + (1)) — pA(7)z(r)] dr

o a J
=j G(-, 7) (E;f(r, X, x}lxw[,,mﬂ—aj‘(r, X, x)!r.,m) z(t) dr.

0

Obviously D, (0)=0. To prove the continuity of the derivative we take
yf’ y”s 2’, Z'e an ﬂ}"" Sa: §|}’"|| <. Then we have

[(DyF ()2 — Dy &1 (y)2" W

€

® 4
G s " 3 ¥y x=w(r “{r
J; (t, 7) (axf('f X, X)lx=win)+ ()

d
—af(‘f, X, x)ix-w(r)w"(n)z'(f) dr

-+

@ d
J:J G(e, 1) (a—xf(f; X, x)lx-w(z)"*ﬂ"(?)

Haif(ra X, x)]x‘ﬂw(r)) (Z'(T) "Z”(T)} dr
X

SMa(n(ly =y IDIZ| +n:(8 Wz’ —2"])
which vields the desired continuity.

Analogously we obtain

" a a
Dy?.ﬁ(y)z: Z G( » tf+0)(_If(x9 x)lx- !p';+y‘__ [f(xo x)lx—w’) Z;
ox ox

fm]
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and D,.% 3(0)=0. The continuity of the derivative is almost obvious in view of condition
H2.
Next we find

D, F(h, )*)z=f G(-, 1) { [f;(r, w(z)+y(z), §(r) +5(r))2(1)
L+
+ 2 (7, w(z) + ¥(), ¥(7) +}"(r))z‘(r)]
- [fx(r, y (1) + (), w(t) +y(r})

+fe(r, w() +y(2), w(7) +y('c))] 2(1)} dr.

Obviously we have D,Z,(0, y)=0. The above arguments show that it suffices to
prove the continuity of the derivative with respect to 4. Here we must consider two
cases:

(a) continuity at A=0. It suffices to take yeTs;n V;,zeV;. We use the
representation

D,F,(h, y)Ff G(-, r){[fx(r, w(z)+ (1), ¥(r) +5(r))
0
=fx(7, w(z)+p(7), W(r)ﬂ'(r))]Z(f)
+ [fj(r, y(r)+ (), #(1) +7(2))z(7)

—filz, y(1) +p(1), w(7) +y(r))2(f)]} dr.
For rel; the points 7 —h and t belong to the same interval of continuity of the
functions v, ¥ and z. Thus we have
|@(7) —w(o)l <hM, |F(z} = (7)< Ch |#(1) —z(z i <{h
| £z, W)+ ¥(1), g () +F (1)) —ful7, w(2) + p(7), w(n) +y(e)| <m{h(M, +{))
[fe(z, w(z)+ p(), §(7)+ J(1))2() = felw, y(1) + 3(7), wiT) +p(r})2(7)]
< fa(z, w(2) +3(0), w(2)+ H)) —falr, w(n) +p(2), w(r) +y(z) (7))
+1 ez, w(r) + (7)), (o) +pE)z(r) — (1)l
<ma(h(M, + )izl + MshE.
On the set A, whose measure is mh we again use the rough estimates
| £z, w(2) +p(), (1) + 7(0)) = ST, w () + p(z), () + p())]2(t)] S2M2| 2|
| fx(r, w(n) + (), () +3(0))a(T) —felt, w(2) + p(2), w(2) +p(1))z(T)) S2M;])2]
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and obtain

EDyF ok, )z || < M{(@ —mi) [0 (h(M) +£)) + ma((M, + D))l z]| + M3hL]
+ 2mh(Ma+ Ms) | 2|}

which tends to 0 as #—0.
(b} To prove the continuity of D, ,(h, y)z at some i >0 it suffices to consider just
the two terms

G(-, D) f Lz, (1) +¥(1), ¥(2) + §(1))z(7) d7 (17)
Yo
and
G(-, ), w(r)+p(7), ¥(z)+ p())z(7) dr. (18)
Jy

We shall consider only the first of these. Take /', #” such that 0 <A’ <A"<h, and
estimate the difference

j G(t, D)L fx(r, w(2) +3(n), w(z — &)
Q

+y(r =) —fu(z, y(0) +p(2), y(e—h") +y(v —h" ) z(1) do

for yeTsn V. If té(t:, t;,+A") for all i or ze(y;, 1,+ k") for some i, the points T —4'
and 7—#" belong to the same interval of continuity of the functions ¥ and y, thus

ly(e—h)—w(z A <M(H"—})
(e —0)=—p(r =) <G = k).
Thus on a set with measure @ —m{h" — k") we have the estimate
| £, w(t)+ y(2), w(t—H)+p(z = H)) —fulz, w(n) +p(z), (v —2") + y(r =)
<m((M+ )" —R)).
On the other hand, if ve(f,+F, t;+ k"), we use the rough estimate
| ST, w(2) + p(), w(r — 1)+ p(z — B)) = fulz, w(n) + (), w(z — 1)+ y(v = k"))
<2M,.

As above, we obtain the inequality

J‘ G, T)[ [z, w(7)+ (1), w(z —H)+p(v— k"))

0
~fu(7, w(r) + p(7), w(z — )+ 3(r—H"))z(7) dr

SM{[o—m(t —H)Im((M,+ 0" = 1))+ 2Moam(h” K}

The last estimate shows the continuity of the integral (17) with respect to 2>0.
Similar arguments are used for the integral (18).
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Finally we obtain

DFhy)z=3 G(-, i+ 0) [ (wi+y,, Wit i)z, + 00 (yityi, Wi+ 7))z

— (A d it i, Wt 3) F 0Ly y, vt )]

It is easily seen that this derivative is continuous with respect to 4, y, z since the
functions y, z, w are continuous in the intervals [t,—k, ¢,] and that D, 40, y)z=0.

Thus we have shown that assertion (ii) is valid and the arguments from section 3.2
complete the proof of the theorem. [
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