
Periodic solutions of impulsive systems with a small delay

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5551

(http://iopscience.iop.org/0305-4470/27/16/020)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 27 (1994) 5551-5563. Printed in the U K  

Periodic solutions of impulsive systems with a small delay 

D D Bainovt and V Chr Covachevt: 
t Higher Medial Institute, Sofia, Bulgaria 
t Institute of Mathematics, Bulgarian Academy of Scienoe, Sofia, Bulgaria 

Received 6 August 1993 

Absbact. For an impulsive system with delay it is proved that if the corresponding system 
without delay has an isolated m-periodic solution, then in any neighbourhood of this orbit 
the system considered also has an m-periodic solution if the delay is small enough. 

1. Introduction 

In the mathematical simulation of the evolution of real processes in physics, chemistry, 
population dynamics, radio engineering, etc which are subject to disturbances of negli- 
gible duration in comparison with the total duration of the process, it is often convenient 
to assume that the disturbances are ‘momentary’, in the form of impulses. This leads 
to the investigation of differential equations and systems with discontinuous trajectories, 
or with impulse effect, called, for the sake of brevity, impulsive differential equations 
and systems [ 1,2]. 

In many applications it is assumed that the system considered is subject to the 
causality law, i.e. the future state of the system does not depend on the past states and 
is determined by the present only. But in the more detailed investigation it often becomes 
obvious that the causality law is just a first approximation to the real situation, and a 
more realistic model should involve some of the past states of the system. Moreover, 
many problems lose their sense if the dependence on the past is not taken into account. 
All this leads to differential equations with delay of the argument [3-51. Here we 
could also mention some recent works concerning the qualitative theory and numerical 
analysis of these equations and some generalizations of this notion [6-141. 

A classical problem of the qualitative theory of differential equations is the existence 
of periodic solutions (for the case of differential equations with delay see [15-40], and 
also [41-451 where some applications to population dynamics are given, while for 
impulsive differential equations see the monograph [Z] and the papers [44-471, quoted 
there as well as more recent works 148-521). A traditional approach to this problem is 
the investigation of the linearized system (also called system in variations) with respect 
to a periodic solution of the unperturbed system satisfying certain non-degeneracy 
assumptions. 

In the present paper for an impulsive system with a small delay it is proved that if 
the corresponding system without delay has an isolated o-periodic solution, then in 
any sufficiently small neighbourhood of this orbit the system considered also has a 
unique o-periodic solution. Thus the impulsive system without delay plays the role of 
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an unperturbed system, and the delay that of a small perturbation. In the scalar (one- 
dimensional) case a similar problem was touched in [53,54] using the method of 
successive approximations. In an earlier version of the present paper the result w a s  
proved under considerably more restrictive assumptions applying the contraction map- 
ping principle [55, section 81. Moreover, the result was extended to the case of a neutral 
impulsive system with a small delay [56] (see Remark 1 below for more details). 

D D Bainov and V Chr Covachev 

2. Statement of the problem. Main result 

Consider the system with impulses at fixed moments 

i =f( 1, x@), x( t  - h))  t#t; i#t ;+h 

Ax( f * )  =I,(x(t;), x(t,-h)) iEZ (1)  

Ax(f ;+h)=O if h > O  i 
where xencR",f: R x n x Q - R " ,  I i : n x a - , R " ( i s Z )  are the impulses at moments 
ti and { t i } t e ~  is a strictly increasing sequence such that 

lim t ;= ico  
i - f m  

R is a domain in R", Ax(rj)=x(l,+O)-s(c,-O), kgO is the delay. 
As usual in the theory of impulsive differential equations, at the points of discontinu- 

ity ti of the solution x ( t )  we assume that x(t;) =x(ti-0). It is clear that, in general, the 
derivatives i ( t , ) ,  . t(ti+h) do not exist. However, there exist the limits 
i ( t , + O ) ,  i ( t t + h i O ) .  According to the above convention, we assume .t(t,)=i(f;-O), 
i ( t ;  t h) - i ( t ; + h  - 0). 

For the sake of brevity we shall use the following notation: 

n( 1) =x(t - h)  x;=x(t,). 

Introduce the following conditions: 
HI.  The functionf(t, x, a)  is continuous, w-periodic with respect to f, and continu- 

ously differentiable with respect to x, a. 
m. The functions I i ( x ,  Z ) E C ' ( Q X ~ ,  R"), i e ~ .  
H3. There exists a positive integer m such that t ,+, .=f , tw,  I , + , n ( x , 2 ) = I , ( ~ ,  ?), 

Together with (1) we consider the so called generuting system 
ish, x, REQ. 

t # ti 
(2 )  

f = f ( t ,  x(0, x@)) 

obtained from (1)  for h=O, and suppose that; 

for all f E  R. 

{ Ax(tj)=Ii(xj, x,) i E Z  

H4. The generating system (2) has an w-periodic solution ~ ( t )  such that v ( t ) ~ Q  

Next define the linearized system with respect to ~ ( t ) :  

t#t; 
(3) i eZ 
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where 

(4) 
a a 

ax ax A ( t ) = - f ( t ,  x, ~ ) l x - v m  &=--l,(x, x)lx-v*. 

Let X ( t )  be the fundamental solution of (3) (i.e. X(O)=E, the unit matrix). Now 
we make the following additional assumptions: 
H5. The matrix E - X ( o )  is non-singular. 
H6. The matrices E + & ,  isZ, are non-singular. 
The last two conditions allow us to define Green's function [2] of the periodic 

problem for a non-homogeneous system corresponding to (3) by the formula 

x ( ~ ) ( E -  x(o))-'x' ( r )  O $ T < f < W  i X( I + a)( E - X (  o)) - ' r ' (  r )  O<t<s<o 
G(t ,  r)= 

and extend it as o-periodic with respect to t and T. 
We may note the relation 

G(t ,  I,+O)=G(t, l j ) ( E + B j ) - ' .  

Our result in the present paper is the following: 

Theorem I .  Let conditions H1-H6 hold. Then there exists a neighbourhood bcC2 of 
theorbitx=yr(t)andanumberho>Osuchthat forh<hsystem(l)  h a s i n a a a i q u e  
o-periodic solution x( t ,  h) such that x( t ,  0) ~ ( r ) .  

Remark I .  As mentioned in the introduction, in the initial version of the paper the 
theorem was proved under stronger assumptions (Lipschitz continuity of the second 
derivatives in conditions HI and H2) using the contraction mapping principle (see [ S I ,  
section 8). In [56] this result was extended for the neutral system 

{ Ax( t j )=I , (x ( t i ) ,  x( t : -h)) , ieH 

using again the contraction mapping principle under the additional assumption that 
the matrix D(t )  is o-periodic, smooth and small enough. Obviously, the assumptions 
in this case can be weakened by applying the implicit function theorem 1571 as below. 
We may note that in both cases under the same conditions (with just continuity of D(t )  
in system (4)) we can apply the Schauder fixed point theorem instead, but then we 
cannot prove the local uniqueness of the periodic solution. The use of the implicit 
function theorem was kindly suggested by a referee. 

i ( t )  = D ( t ) i ( t  - h) + f ( t ,  x ( t ) ,  x(t - h))  f # ti+ kh ieH k e  N U (0) 

Ax(t,+kh)=O if t j+kh#tj  V k Z  (4) 

3. Proof of the main result 

3.1. Reduction of the problem to an operator equation in a suitable funcfion space 

There exists a constant 6 ,  >O such that C2 contains a closed &neighbourhood a, of 
the periodic orbit x =  ~ ( t ) .  
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For a vector xeR" we denote by 1x1 its Euclidean norm, and for an n x n matrix -4 
we define the associated norm 

IAl =sup{lAxl/Ixl; xsR"\O}. 

In system (1) we change the variables according to the formula 

x = y +  W ( 0  
and obtain the system 

i = A ( O y +  Q(6 Y )  +Af(f(r, Y +  v, 8+ V) # ti t # t i + h  

AY(!!) =Bi,~i+ Ji (;*, + (1.t + vi, A+ V i )  isz (6)  
Ay(l;+h)=O for h>O, isE i 

where 

Af(f(t, x, 3 = A t ,  x, 3 -f(L x, x) 
A12(x;, ~ ; ) ~ ~ ; ( ~ ~ , . ~ , ) - ~ ~ ( x j . ~ i )  

are perturbations due to the delay while 

Q ( r ,  Y) 

A W  =m+ vi. Y +  W) - I,( W ,  W J  - B;Y 

Y + ~ 4 %  Y +  ~ ( 9 )  -f(f, v(r) ,  ~ ( 0 )  - A ( ~ ) Y  (7) 

(8 )  

are nonlinearities independent of the delay. 
To find an w-periodic solution of system ( I )  we shall find a solution y(f) of system 

(6)  satisfying Iy(t)l Q6Q6,.  According to [2] the unique o-periodic solution z ( f )  of 
the linear system 

i= A( t ) z+  80, Y )  -F MU, Y +  I, j +  $4 
Az(t;)  = B,z, + J , ( y i )  + AIj(yi+ vi, j j  + vi) 

f f t i  

icH (9) 
Az(t,+h)=O for h>O,isE 1 

is given by the formula 

d t )  = G(4 r)[Q(r ,  A.)) +Af(f(7, ~ ( 7 )  + w(r ) ,  + V(7))1 dT 

+ G(t,  t i + O ) [ J j f ~ i ) + A I i ( ~ i + W i , ~ i + ~ ; ) I  

6 
O < t , < a ,  

where Green's function G(t ,  T) was defined above. 
Suppose, for the sake of definiteness, that 

O < t I < t , < . .  . < t ,<w .  

Let hl>O be so small that for any he[O, h,] we have 
~ 

t ,+h< t i + ! ,  i= 1, m - 1, t ,+h< w. 
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Denote by e", the space ofall w-periodic, piecewise continuous functions w :  R+Rn 
with discontinuities of the first kind at t ,  and w(t , -O)=w( t ; ) ,  i e Z ,  suppljed with the 
norm 

For 6~(0, SI ]  we define the subset 

rs = { W E  e-,": l lW l l<  6 )  

By e$! we denote the space of all functions W G ~ ~ , "  having continuous derivatives on 
each interval of the form ( t i ,  t i+h)  or ( t ,+h ,  and such that there exist the limits 
! i ( t ;+O)  and @ ( t ; + h + O ) .  For such functions by definition we set $( t ; )=+( t , -O) ,  
d . ( f ,+h)=!i( t :+h-O).  For c > O  we define the subset 

3.2. Application of the implicit function theorem 

Wedefine t h e m a p g : [ 0 , h l ] x ( ~ 6 c c ~ , " ) + e ~ ~  by 

g(h,  U) =Y- W h ,  U) 
and seek a solution y of the equation 

g ( h , y ) = O .  (13) 
Obviously, g(0,O) = 0. We shall prove that : 
(i) 99 is continuous with respect to h at the point h=O for y in T6, ; 
(ii) 9 is continuously differentiable with respect to y in the set [0, h l ]  x r,,, and 

Assertion (i) means that '3 may be considered as a one-parameter family of perturba- 
D,g(O, 0) =Id. 

tions of the map gO=g(o, ' ) :  T6+(?0,,,. 
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Following some arguments in [57], introduce the Banach spaces 
I 

Bo= C(T& I Co.. ), I I  =a* = Cq". 

@(J, y )  = B(h, Y)E& 

For '3 near go in lo (i.e. h near 0) and y near 0 in 1, define 

According to assertion (ii) Q, is continuously differentiable with respect to y for fixed 
g, and the differentiability with respect to 9 is obvious since 0 is linear in B. It follows 
(see exercise after Lemma 1.1 in [57]) that Q, is continuously differentiable in (g ,y ) ,  
and the differential for fixed J at ( 9 , y ) = ( g 0 ,  0) is the identity map in 

Then by the implicit function theorem (Theorem 1.5 in [57]) there exists a C1 map 
9 from a neighbourhood of go in IO to a neighbourhood of 0 in 1, such that y = 9 ( J )  
is the only solution close to 0 of Q,(g,y)=O. In other words, there exists a number 
b ~ ( 0 ,  h , ]  and a continuous mapy(h): [O, k ~ ) + T , , c & , , ( S o ~ ( O ,  SI]) satisfying equa- 
tion (1 3) and y(0) = 0. This map, considered as a function of t depending on the delay k 
in a continuous way, gives the unique u-periodic solution y( l ,  h) of system (6) satisfying 
[lyll <so. Then by formula (5) we obtain the unique o-periodic solution x( t ,  h) of 
system (1) in a &-neighbourhood d of the periodic orbit x =  ~ ( t ) .  Moreover, x(f, 0)= 
w(0 .  

3.3. Proof of asserlions (i) and (ii) 

First we introduce some notation. Let us denote 

M,=sup(l f ( t ,  x, 31: t E [ O ,  a], x, f€Q,}  

M2=sup(lf*(t,x,2)I: t€[O,o],x,fsbll} 

M,=sup(l h( l ,  x, i)l: f E [ O ,  01. x, f E Q , }  

MA= sup{I &I, (x, 2)l: i = G  x, 2.~0,) 

wheref,,jl, and &Ii are the partial derivatives off with respect to x and 2, and of I, 
with respect to 5, and 

M=sup{lG(t, r)l: t ,  re[O, o]}. 
We introduce the following modules of continuity of the first derivatives of the 

function in condition HI :  

?I(p)=suP{lf,(4 x, x+!J)-f,(L 1, x)l: tdO, WI. x 4 ,  IlYll a} 
?l(~)=s~P(I~(~Ix~~+Y)-f(f,x,x)I: td0 ,  w l , x E f i , ,  llvll<p} 

~ ~ [ O , ~ ] , ~ = ~ ( ~ ) , I ~ ' I ~ ~ I , I ~ " ' I ~ ~ I , I ~ ' - Y ' ' I ~ ~  . 1 
(i) It suffices to prove the continuity of Q with respect to h at the point k = O  for 

yeTs , .  From the representation (12) we find Q ' fo ,y)=F~(y)+F&).  It remains to 
estimate F2(hr y )  and F 4 ( k ,  y )  for y in a dense subset of T+, namely Y E T ,  n V, for 
some 5>0. 
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Define the sets 
In 

A h =  U ( t i ,  h + h )  Ih = LO, W ]  
i -  I 

For tsi, the points t and t - h  belong to the same interval of continuity of the functions 
w and y ,  thus 
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Continuous differentiability of 9 ( h , j )  with respect to J' means that the mapping 
Dy9(h,y)z:  [0, h l ]  x (Tbcco , . )  x eo,,-Co,. is continuous. Obviously we have 

D D Bainov and 1' Chr Covachev 

D y ' + f ( h , y ) = I d - D Y W , y )  

and 

D y W h , ~ ) = D f l i ( ~ ) +  4 9 z ( h ,  Y ) + D R S ( V ) + D @ ~ ( ~ , Y )  (16) 

provided that all derivatives on the right-hand sides exist. Thus it suffices to find that 
the derivatives on the right-hand side of (16) exist, are continuous in the above sense 
and vanish at h = 0, y = 0.  We shall carry out the proof with all details only for the first 
addend. 

~ # t ( y ) z =  lim p - ' [ 9 1 ( y + p z ) - 9 1 ( y ) l  
P -0 

G(.,  f ) [ Q ( r , u ( f ) + ~ z ( f ) ) - Q ( . r , v ( f ) ) l d f  
P -0 

Obviously D f l l ( O ) = O .  To prove the continuity of the derivative we take 
y', y", z', z " E ~ ~ , ~ ,  Ily'll G6, Ily"llG6. Then we have 

I(D71 (Y')Z' - D,~dy")z'?(OI 

which yields the desired continuity. 
Analogously we obtain 
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and D,P3(0 )  = 0. The continuity of the derivative is almost obvious in view of condition 
H2. 

Next we find 

Obviously we have Dy.F2(0,y)=O. The above arguments show that it suffices to 
prove the continuity of the derivative with respect to h. Here we must consider two 
cases: 

(a) continuity at h=O. It suffices to take y ~ T s n  V < , Z E V < .  We use the 
representation 



< M {  [W - m(h"- h')] v i (  (MI + O ( k "  -A ' ) )  + 2M2m(k" - h')} . 
The last estimate shows the continuity of the integral (17) with respect to h>O. 

Similar arguments are used for the integral (18). 
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Finally we obtain 
... 

D y Y d h ,  U)Z= 1 G ( .  , f i  + O)[a.Ji(yi +Y,, l i + B , ) ~ , +  W i  (vi+yi,  l i + j i ) i i  
i -  I 

- (8x1, (w, +Yi 3 ~z + Y i )  + a J i (  vi + yi I yi+yi))ziI.  

It is easily seen that this derivative is continuous with respect to h, y ,  z since the 

Thus we have shown that assertion (ii) is valid and the arguments from section 3.2 
functions y ,  I, y are continuous in the intervals [ t i - k ,  t , ]  and that Dfld (0 , y ) z=O.  

complete the proof of the theorem. 0 
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